TY - JOUR
T1 - Study of Newtonian noise from the KAGRA cooling system
AU - Bajpai, Rishabh
AU - Tomaru, Takayuki
AU - Suzuki, Toshikazu
AU - Yamamoto, Kazuhiro
AU - Ushiba, Takafumi
AU - Honda, Tohru
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
PY - 2024/3/22
Y1 - 2024/3/22
N2 - Large-scale Cryogenic Gravitational-Wave Telescope, KAGRA, is a second-generation gravitational-wave detector (GWD) in Japan. The features distinguishing KAGRA from other GWDs are its underground location and the cryogenic operation of the four main mirrors. The underground location provides a quiet site with low seismic noise, while the cryogenic operation cools the mirrors down to 20 K, reducing the thermal noises. However, as cooling system components are relatively heavy and in close proximity to the test masses, oscillation of gravity force induced by their vibration, so-called Newtonian noise, could contaminate the detector sensitivity. Therefore, we used the results from the vibration analysis of the KAGRA cryostat at 12K to estimate cooling system Newtonian noise in the 1-100 Hz frequency band. In this talk, we present methods, considerations, calculations and results of Newtonian noise estimation. Since cryogenics will be a key technology employed in third-generation detectors like Einstein Telescope, the findings can guide the design of the cryogenic infrastructure of these third-generation detectors.
AB - Large-scale Cryogenic Gravitational-Wave Telescope, KAGRA, is a second-generation gravitational-wave detector (GWD) in Japan. The features distinguishing KAGRA from other GWDs are its underground location and the cryogenic operation of the four main mirrors. The underground location provides a quiet site with low seismic noise, while the cryogenic operation cools the mirrors down to 20 K, reducing the thermal noises. However, as cooling system components are relatively heavy and in close proximity to the test masses, oscillation of gravity force induced by their vibration, so-called Newtonian noise, could contaminate the detector sensitivity. Therefore, we used the results from the vibration analysis of the KAGRA cryostat at 12K to estimate cooling system Newtonian noise in the 1-100 Hz frequency band. In this talk, we present methods, considerations, calculations and results of Newtonian noise estimation. Since cryogenics will be a key technology employed in third-generation detectors like Einstein Telescope, the findings can guide the design of the cryogenic infrastructure of these third-generation detectors.
UR - http://www.scopus.com/inward/record.url?scp=85189210551&partnerID=8YFLogxK
M3 - 会議記事
AN - SCOPUS:85189210551
SN - 1824-8039
VL - 441
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 115
T2 - 18th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2023
Y2 - 28 August 2023 through 1 September 2023
ER -