TY - JOUR
T1 - Recombinant thrombomodulin prevented hepatic ischemia-reperfusion injury by inhibiting high-mobility group box 1 in rats
AU - Hirakawa, Yuki
AU - Tsuchishima, Mutsumi
AU - Fukumura, Atsushi
AU - Kinoshita, Kaori
AU - Hayashi, Nobuhiko
AU - Saito, Takashi
AU - George, Joseph
AU - Toshikuni, Nobuyuki
AU - Ueda, Yoshimichi
AU - Tsutsumi, Mikihiro
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/11/15
Y1 - 2019/11/15
N2 - Recombinant thrombomodulin (rTM) is a novel anticoagulant and anti-inflammatory agent that inhibits secretion of high-mobility group box 1 (HMGB1) from liver. We evaluated the protective effects of rTM on hepatic ischemia-reperfusion injury in rats. Ischemia was induced by clamping the portal vein and hepatic artery of left lateral and median lobes of the liver. At 30 min before ischemia and at 6 h after reperfusion, 0.3 ml of saline (IR group) or 0.3 ml of saline containing 6 mg/kg body weight of rTM (IR-rTM group) was injected into the liver through inferior vena cava or caudate vein. Blood flow was restored at 60 min of ischemia. Blood was collected 30 min prior to induction of ischemia and before restoration of blood flow, and at 6, 12, and 24 h after reperfusion. All the animals were euthanized at 24 h after reperfusion and the livers were harvested and subjected to biochemical and pathological evaluations. Serum levels of ALT, AST, and HMGB1 were significantly lower after reperfusion in the IR-rTM group compared to IR group. Marked hepatic necrosis was present in the IR group, while necrosis was almost absent in IR-rTM group. Treatment with rTM significantly reduced the expression of TNF-α and formation of 4-hydroxynonenal in the IR-rTM group compared to IR group. The results of the present study indicate that rTM could be used as a potent therapeutic agent to prevent IR-induced hepatic injury and the related adverse events.
AB - Recombinant thrombomodulin (rTM) is a novel anticoagulant and anti-inflammatory agent that inhibits secretion of high-mobility group box 1 (HMGB1) from liver. We evaluated the protective effects of rTM on hepatic ischemia-reperfusion injury in rats. Ischemia was induced by clamping the portal vein and hepatic artery of left lateral and median lobes of the liver. At 30 min before ischemia and at 6 h after reperfusion, 0.3 ml of saline (IR group) or 0.3 ml of saline containing 6 mg/kg body weight of rTM (IR-rTM group) was injected into the liver through inferior vena cava or caudate vein. Blood flow was restored at 60 min of ischemia. Blood was collected 30 min prior to induction of ischemia and before restoration of blood flow, and at 6, 12, and 24 h after reperfusion. All the animals were euthanized at 24 h after reperfusion and the livers were harvested and subjected to biochemical and pathological evaluations. Serum levels of ALT, AST, and HMGB1 were significantly lower after reperfusion in the IR-rTM group compared to IR group. Marked hepatic necrosis was present in the IR group, while necrosis was almost absent in IR-rTM group. Treatment with rTM significantly reduced the expression of TNF-α and formation of 4-hydroxynonenal in the IR-rTM group compared to IR group. The results of the present study indicate that rTM could be used as a potent therapeutic agent to prevent IR-induced hepatic injury and the related adverse events.
KW - 4-Hydroxynonenal
KW - HMGB1
KW - Ischemia
KW - Ischemia-reperfusion injury
KW - Recombinant-thrombomodulin
UR - http://www.scopus.com/inward/record.url?scp=85072681203&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2019.172681
DO - 10.1016/j.ejphar.2019.172681
M3 - 学術論文
C2 - 31542482
AN - SCOPUS:85072681203
SN - 0014-2999
VL - 863
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
M1 - 172681
ER -