Recognition Effects of Deep Convolutional Neural Network on Smudged Handwritten Digits

Zhe Xu, Yusuke Terada, Dongbao Jia, Zonghui Cai, Shangce Gao

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

Deep convolutional neural network (CNN) is known to be the first truly successful deep learning approach for image processing and understanding, e.g., the handwritten digits discrimination. However, in real applications such as handwritten zip code recognition, the collected images are commonly with smudged background. In this paper, we study the recognition effects of CNN on smudged digits and compared the results with three-layered perceptron. Experimental results based on MNIST dataset with smudged background (simulated by salt-and-pepper and gaussian noises) show that a drastic decline of recognition accuracy is observed for CNN, suggesting that the extracted features by convolutional operation and max pooling is very sensitive to the noise.

本文言語英語
ホスト出版物のタイトルProceedings - 2018 5th International Conference on Information Science and Control Engineering, ICISCE 2018
編集者Shaozi Li, Ying Dai, Yun Cheng
出版社Institute of Electrical and Electronics Engineers Inc.
ページ412-416
ページ数5
ISBN(電子版)9781538655009
DOI
出版ステータス出版済み - 2018/07/02
イベント5th International Conference on Information Science and Control Engineering, ICISCE 2018 - Zhengzhou, Henan, 中国
継続期間: 2018/07/202018/07/22

出版物シリーズ

名前Proceedings - 2018 5th International Conference on Information Science and Control Engineering, ICISCE 2018

学会

学会5th International Conference on Information Science and Control Engineering, ICISCE 2018
国/地域中国
CityZhengzhou, Henan
Period2018/07/202018/07/22

ASJC Scopus 主題領域

  • 決定科学(その他)
  • 情報システムおよび情報管理
  • 制御およびシステム工学
  • 産業および生産工学

フィンガープリント

「Recognition Effects of Deep Convolutional Neural Network on Smudged Handwritten Digits」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル