Prediction of visceral pleural invasion of clinical stage I lung adenocarcinoma using thoracoscopic images and deep learning

Yoshifumi Shimada, Toshihiro Ojima, Yutaka Takaoka, Aki Sugano, Yoshiaki Someya, Kenichi Hirabayashi, Takahiro Homma, Naoya Kitamura, Yushi Akemoto, Keitaro Tanabe, Fumitaka Sato, Naoki Yoshimura, Tomoshi Tsuchiya*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

Purpose: To develop deep learning models using thoracoscopic images to identify visceral pleural invasion (VPI) in patients with clinical stage I lung adenocarcinoma, and to verify if these models can be applied clinically. Methods: Two deep learning models, one based on a convolutional neural network (CNN) and the other based on a vision transformer (ViT), were applied and trained via 463 images (VPI negative: 269 images, VPI positive: 194 images) captured from surgical videos of 81 patients. Model performances were validated via an independent test dataset containing 46 images (VPI negative: 28 images, VPI positive: 18 images) from 46 test patients. Results: The areas under the receiver operating characteristic curves of the CNN-based and ViT-based models were 0.77 and 0.84 (p = 0.304), respectively. The accuracy, sensitivity, specificity, and positive and negative predictive values were 73.91, 83.33, 67.86, 62.50, and 86.36% for the CNN-based model and 78.26, 77.78, 78.57, 70.00, and 84.62% for the ViT-based model, respectively. These models’ diagnostic abilities were comparable to those of board-certified thoracic surgeons and tended to be superior to those of non-board-certified thoracic surgeons. Conclusion: The deep learning model systems can be utilized in clinical applications via data expansion.

本文言語英語
ページ(範囲)540-550
ページ数11
ジャーナルSurgery Today
54
6
DOI
出版ステータス出版済み - 2024/06

ASJC Scopus 主題領域

  • 外科

フィンガープリント

「Prediction of visceral pleural invasion of clinical stage I lung adenocarcinoma using thoracoscopic images and deep learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル