Prediction of psychotic disorder in individuals with clinical high-risk state by multimodal machine-learning: A preliminary study

Yoichiro Takayanagi*, Daiki Sasabayashi, Tsutomu Takahashi, Yuko Higuchi, Shimako Nishiyama, Takahiro Tateno, Yuko Mizukami, Yukiko Akasaki, Atsushi Furuichi, Haruko Kobayashi, Mizuho Takayanagi, Kyo Noguchi, Noa Tsujii, Michio Suzuki

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Objective markers which can reliably predict psychosis transition among individuals with at-risk mental state (ARMS) are warranted. In this study, sixty-five ARMS subjects [of whom 17 (26.2%) later developed psychosis] were recruited, and we performed supervised linear support vector machine (SVM) with a variety of combinations of.modalities (clinical features, cognition, structural magnetic resonance imaging, eventrelated.potentials, and polyunsaturated fatty acids) to predict future psychosis onset. While single-modality SVMs showed a poor to fair accuracy, multi-modal SVMs revealed better predictions, up to 0.88 of the balanced accuracy, suggesting the advantage of multi-modal machine-learning methods for forecasting psychosis onset in ARMS.

本文言語英語
論文番号100089
ジャーナルBiomarkers in Neuropsychiatry
10
DOI
出版ステータス出版済み - 2024/06

ASJC Scopus 主題領域

  • 臨床神経学
  • 臨床生化学
  • 精神医学および精神衛生
  • 生化学、医学

フィンガープリント

「Prediction of psychotic disorder in individuals with clinical high-risk state by multimodal machine-learning: A preliminary study」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル