Predicting investment behavior: An augmented reinforcement learning model

Tetsuya Shimokawa*, Kyoko Suzuki, Tadanobu Misawa, Yoshitaka Okano

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

11 被引用数 (Scopus)

抄録

The goal of this paper is to augment the ordinal temporal-difference type (TD-type) reinforcement learning model in order to detect the most suitable learning model of the human decision-making process in financial investment tasks. The simplicity and robustness of the TD-type learning model is fascinating. However, the available evidence and our observation suggest the necessity of introducing the nonlinear effect in learning and the possibility that additional factors might play important roles in the investment decision-making process. To extend the ordinal TD-type learning model, we adopt a three-layered perceptron as the basis function and the hierarchical Bayesian method to calibrate the parameter values. The result of the predictive test suggests that the augmented TD-type learning model constructed in this paper can evade the overfitting and can predict people's investment behavior well as compared to other familiar learning models.

本文言語英語
ページ(範囲)3447-3461
ページ数15
ジャーナルNeurocomputing
72
16-18
DOI
出版ステータス出版済み - 2009/10

ASJC Scopus 主題領域

  • コンピュータ サイエンスの応用
  • 認知神経科学
  • 人工知能

フィンガープリント

「Predicting investment behavior: An augmented reinforcement learning model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル