On the operator homomorphisms of polysurface groups

Tatsuya Kawabe*, Tsuyoshi Watabe

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Let Γn be a polysurface group of length n. It is commensurable with a fundamental group of a 2n-manifold X(Γn) which is considered as an n-step iterated surface-fibration. Our interest is in the algebraic structure of the iterated surface-fibration. In this paper, the purpose is to find some properties of Γn independent of the choice of the filtration 1=Γ0⊂Γ1⊂Γ 2⊂⊂Γn. We notice that operator homomorphisms θiii-1→Out(Γi-1)(i=2,...,n) are of three types, and prove that the number of the operator homomorphisms of each type is independent of the choice of the filtration of Γn for some cases. Moreover, we are also concerned with the case that Γn is embedded in a connected linear Lie group without compact factor as a discrete cocompact subgroup.

本文言語英語
ページ(範囲)315-325
ページ数11
ジャーナルJournal of Pure and Applied Algebra
162
2-3
DOI
出版ステータス出版済み - 2001/08/24

ASJC Scopus 主題領域

  • 代数と数論

フィンガープリント

「On the operator homomorphisms of polysurface groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル