Low-Sample-Size Data-Driven Re-stabilization of Gene Network Systems

Xun Shen*, Masahide Morishita*, Jun Ichi Imura*, Makito Oku, Kazuyuki Aihara

*この論文の責任著者

研究成果: ジャーナルへの寄稿会議記事査読

9 被引用数 (Scopus)

抄録

During the progression of complex diseases caused by qualitative shifts in gene networks, the deteriorations may be abrupt and cause a critical transition from a healthy state to a disease state. We define a pre-disease state as a state just before the imminent critical transition. Medical treatment in the pre-disease state should be more efficient than in the disease state. This paper proposes a data-driven method to design an input assignment and a stabilizing controller to avoid this kind of qualitative shift. The proposed method only requires a small number of data samples on the steady pre-disease state. We show numerical examples to validate the effectiveness of the proposed method.

本文言語英語
ページ(範囲)241-246
ページ数6
ジャーナルIFAC Proceedings Volumes (IFAC-PapersOnline)
55
25
DOI
出版ステータス出版済み - 2022
イベント10th IFAC Symposium on Robust Control Design, ROCOND 2022 - Kyoto, 日本
継続期間: 2022/08/302022/09/02

ASJC Scopus 主題領域

  • 制御およびシステム工学

フィンガープリント

「Low-Sample-Size Data-Driven Re-stabilization of Gene Network Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル