Land use and land cover inference in large areas using multi-temporal optical satellite images

Shutaro Hashimoto, Takeo Tadono, Masahiko Onosato, Masahiro Hori

研究成果: 書籍の章/レポート/会議録会議への寄与査読

5 被引用数 (Scopus)

抄録

This paper describes a new land use and land cover (LULC) classification method for classifying multi-temporal high-resolution satellite data in large areas. The classification method uses combined value of both reflectance of a pixel and its observation date as an input data, and calculates its probability distribution among all LULC classes via Bayesian inference based on a generative model estimated by kernel density estimation. This method can be easily applied to multi-temporal data to exploit phenological change information of vegetation, even if available multi-temporal data have a seasonal bias. In this paper, we conducted the classification over the entire land mass of Japan, using the multi-temporal data observed by the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) aboard the ALOS, and we evaluated its accuracy in comparison to conventional methods.

本文言語英語
ホスト出版物のタイトル2013 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013 - Proceedings
ページ3333-3336
ページ数4
DOI
出版ステータス出版済み - 2013
イベント2013 33rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013 - Melbourne, VIC, オーストラリア
継続期間: 2013/07/212013/07/26

出版物シリーズ

名前International Geoscience and Remote Sensing Symposium (IGARSS)

学会

学会2013 33rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013
国/地域オーストラリア
CityMelbourne, VIC
Period2013/07/212013/07/26

ASJC Scopus 主題領域

  • コンピュータ サイエンスの応用
  • 地球惑星科学一般

フィンガープリント

「Land use and land cover inference in large areas using multi-temporal optical satellite images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル