TY - JOUR
T1 - Lack of modulatory effect of the SCN5A R1193Q polymorphism on cardiac fast na+ current at body temperature
AU - Abe, Masayoshi
AU - Kinoshita, Koshi
AU - Matsuoka, Kenta
AU - Nakada, Takahito
AU - Miura, Kimiaki
AU - Hata, Yukiko
AU - Nishida, Naoki
AU - Tabata, Toshihide
N1 - Publisher Copyright:
© 2018 Abe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/11
Y1 - 2018/11
N2 - SCN5A encodes the main subunit of the NaV1.5 channel, which mediates the fast Na+ current responsible for generating cardiac action potentials. The single nucleotide polymorphism SCN5A(R1193Q), which results in an amino acid replacement in the subunit, is common in East Asia. SCN5A(R1193Q) is often identified in patients with type 3 long QT syndrome and Brugada syndrome. However, its linkage to arrhythmic disorders is under debate. Previous electrophysiological studies performed at room temperature inconsistently reported the gain- or loss-of-function effect of SCN5A(R1193Q) on the NaV1.5 channel. More recently, it was theoretically predicted that SCN5A(R1193Q) would exert a loss-of-function effect at body temperature. Here, we experimentally assessed whether SCN5A (R1193Q) modulates the NaV1.5 channel at various temperatures including normal and febrile body temperatures. We compared voltage-gated Na+ currents in SCN5A(R1193Q)-transfected and wild-type SCN5A-transfected HEK293T cells using a whole-cell voltage-clamp technique. First, we made comparisons at constant temperatures of 25C, 36.5C, and 38C, and found no difference in the conductance density, voltage dependence of gating, or time dependence of gating. This suggested that SCN5A(R1193Q) does not modulate the NaV1.5 channel regardless of temperature. Second, we made comparisons while varying the temperature from 38C to 26C in 3 min, and again observed no difference in the time course of the amplitude or time dependence of gating during the temperature change. This also indicated that SCN5A(R1193Q) does not modulate the NaV1.5 channel in response to an acute body temperature change. Therefore, SCN5A(R1193Q) may not be a monogenic factor that triggers arrhythmic disorders.
AB - SCN5A encodes the main subunit of the NaV1.5 channel, which mediates the fast Na+ current responsible for generating cardiac action potentials. The single nucleotide polymorphism SCN5A(R1193Q), which results in an amino acid replacement in the subunit, is common in East Asia. SCN5A(R1193Q) is often identified in patients with type 3 long QT syndrome and Brugada syndrome. However, its linkage to arrhythmic disorders is under debate. Previous electrophysiological studies performed at room temperature inconsistently reported the gain- or loss-of-function effect of SCN5A(R1193Q) on the NaV1.5 channel. More recently, it was theoretically predicted that SCN5A(R1193Q) would exert a loss-of-function effect at body temperature. Here, we experimentally assessed whether SCN5A (R1193Q) modulates the NaV1.5 channel at various temperatures including normal and febrile body temperatures. We compared voltage-gated Na+ currents in SCN5A(R1193Q)-transfected and wild-type SCN5A-transfected HEK293T cells using a whole-cell voltage-clamp technique. First, we made comparisons at constant temperatures of 25C, 36.5C, and 38C, and found no difference in the conductance density, voltage dependence of gating, or time dependence of gating. This suggested that SCN5A(R1193Q) does not modulate the NaV1.5 channel regardless of temperature. Second, we made comparisons while varying the temperature from 38C to 26C in 3 min, and again observed no difference in the time course of the amplitude or time dependence of gating during the temperature change. This also indicated that SCN5A(R1193Q) does not modulate the NaV1.5 channel in response to an acute body temperature change. Therefore, SCN5A(R1193Q) may not be a monogenic factor that triggers arrhythmic disorders.
UR - http://www.scopus.com/inward/record.url?scp=85056363237&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0207437
DO - 10.1371/journal.pone.0207437
M3 - 学術論文
C2 - 30419068
AN - SCOPUS:85056363237
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e0207437
ER -