Image Denoising with Edge-Preserving and Segmentation Based on Mask NHA

Fumitaka Hosotani, Yuya Inuzuka, Masaya Hasegawa, Shigeki Hirobayashi*, Tadanobu Misawa

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

42 被引用数 (Scopus)

抄録

In this paper, we propose a zero-mean white Gaussian noise removal method using a high-resolution frequency analysis. It is difficult to separate an original image component from a noise component when using discrete Fourier transform or discrete cosine transform for analysis because sidelobes occur in the results. The 2D non-harmonic analysis (2D NHA) is a high-resolution frequency analysis technique that improves noise removal accuracy because of its sidelobe reduction feature. However, spectra generated by NHA are distorted, because of which the signal of the image is non-stationary. In this paper, we analyze each region with a homogeneous texture in the noisy image. Non-uniform regions that occur due to segmentation are analyzed by an extended 2D NHA method called Mask NHA. We conducted an experiment using a simulation image, and found that Mask NHA denoising attains a higher peak signal-to-noise ratio (PSNR) value than the state-of-the-art methods if a suitable segmentation result can be obtained from the input image, even though parameter optimization was incomplete. This experimental result exhibits the upper limit on the value of PSNR in our Mask NHA denoising method. The performance of Mask NHA denoising is expected to approach the limit of PSNR by improving the segmentation method.

本文言語英語
論文番号7303961
ページ(範囲)6025-6033
ページ数9
ジャーナルIEEE Transactions on Image Processing
24
12
DOI
出版ステータス出版済み - 2015/12

ASJC Scopus 主題領域

  • ソフトウェア
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Image Denoising with Edge-Preserving and Segmentation Based on Mask NHA」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル