抄録
Let Γ (W) be the Cayley graph of a finite Weyl groupoid . In this paper, we show an existence of a Hamiltonian cycle of Γ (W) for any . We exactly draw a Hamiltonian cycle of Γ (W) for any (resp. some) irreducible of rank three (resp. four). Moreover for the irreducible of rank three, we give a second largest eigenvalue of the adjacency matrix of Γ (W), and know if Γ(W) is a bipartite Ramanujan graph or not.
本文言語 | 英語 |
---|---|
論文番号 | 2650054 |
ジャーナル | Journal of Algebra and its Applications |
DOI | |
出版ステータス | 受理済み/印刷中 - 2024 |
ASJC Scopus 主題領域
- 代数と数論
- 応用数学