抄録
Background: Kawasaki disease (KD) is a systemic vasculitis that is currently the most common cause of acquired heart disease in children. However, its etiology remains unknown. Long non-coding RNAs (lncRNAs) contribute to the pathophysiology of various diseases. Few studies have reported the role of lncRNAs in KD inflammation; thus, we investigated the role of lncRNA in KD inflammation. Methods: A total of 50 patients with KD (median age, 19 months; 29 males and 21 females) were enrolled. We conducted cap analysis gene expression sequencing to determine differentially expressed genes in monocytes of the peripheral blood of the subjects. Results: About 21 candidate lncRNA transcripts were identified. The analyses of transcriptome and gene ontology revealed that the immune system was involved in KD. Among these genes, G0/G1 switch gene 2 (G0S2) and its antisense lncRNA, HSD11B1-AS1, were upregulated during the acute phase of KD (P < 0.0001 and <0.0001, respectively). Moreover, G0S2 increased when lipopolysaccharides induced inflammation in THP-1 monocytes, and silencing of G0S2 suppressed the expression of HSD11B1-AS1 and tumor necrosis factor-α. Conclusions: This study uncovered the crucial role of lncRNAs in innate immunity in acute KD. LncRNA may be a novel target for the diagnosis of KD. Impact: This study revealed the whole aspect of the gene expression profile of monocytes of patients with Kawasaki disease (KD) using cap analysis gene expression sequencing and identified KD-specific molecules: G0/G1 switch gene 2 (G0S2) and long non-coding RNA (lncRNA) HSD11B1-AS1.We demonstrated that G0S2 and its antisense HSD11B1-AS1 were associated with inflammation of innate immunity in KD.lncRNA may be a novel key target for the diagnosis of patients with KD.
本文言語 | 英語 |
---|---|
ページ(範囲) | 378-387 |
ページ数 | 10 |
ジャーナル | Pediatric Research |
巻 | 92 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 2022/08 |
ASJC Scopus 主題領域
- 小児科学、周産期医学および子どもの健康