Fractional-Order Particle Swarm Optimization for Sustainable Energy Management

Ningning Wang, Zhenyu Lei, Haotian Li, Tao Zheng, Ting Jin, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

Sustainable energy systems, which encompass both renewable energy and energy efficiency, aim to reduce reliance on finite resources such as fossil fuels while minimizing negative impacts on the environment and promoting economic and social development. Wind energy, in particular, is an increasingly important renewable source of energy that can help combat climate change and is cost-competitive with traditional sources of electricity. To maximize energy production, optimizing wind turbine layout is crucial and involves determining the optimal placement and configuration of turbines within a given space. This article proposes a novel approach called fractional-order particle swarm optimization (FOPSO) to address this problem and demonstrates that it outperforms other state-of-the-art optimization algorithms in terms of both solution quality and power generation efficiency.

本文言語英語
ホスト出版物のタイトルProceedings - 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ128-132
ページ数5
ISBN(電子版)9798350326178
DOI
出版ステータス出版済み - 2023
イベント15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023 - Hangzhou, 中国
継続期間: 2023/08/262023/08/27

出版物シリーズ

名前Proceedings - 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023

学会

学会15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023
国/地域中国
CityHangzhou
Period2023/08/262023/08/27

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • 制御と最適化

フィンガープリント

「Fractional-Order Particle Swarm Optimization for Sustainable Energy Management」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル