Distributed Gaussian Process Based Cooperative Visual Pursuit Control for Drone Networks

Makoto Saito*, Junya Yamauchi*, Tesshu Fujinami*, Marco Omainska*, Masayuki Fujita*

*この論文の責任著者

研究成果: ジャーナルへの寄稿会議記事査読

抄録

In this paper, we propose a control law for camera-equipped drone networks to pursue a target rigid body with unknown motion based on distributed Gaussian process. First, we consider the situation where each drone has its own dataset, and learns the unknown target motion in a distributed manner. Second, we propose a control law using the distributed Gaussian processes, and show that the estimation and control errors are ultimately bounded. Furthermore, the effectiveness of the proposed method is verified first in simulations and then in experiments with actual drones.

本文言語英語
ページ(範囲)126-131
ページ数6
ジャーナルIFAC Proceedings Volumes (IFAC-PapersOnline)
55
27
DOI
出版ステータス出版済み - 2022/09/01
イベント9th IFAC Symposium on Mechatronic Systems, MECHATRONICS 2022 - Los Angeles, 米国
継続期間: 2022/09/062022/09/09

ASJC Scopus 主題領域

  • 制御およびシステム工学

フィンガープリント

「Distributed Gaussian Process Based Cooperative Visual Pursuit Control for Drone Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル