Dendritic Learning-Based DenseNet for Classification

Yidong Cao, Zhipeng Liu, Zhiming Zhang, Rong Long Wang, Meng Jia*, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

Dendritic neurons play a crucial role in information processing in neural circuits. Inspired by these neurons, researchers have developed dendritic neural models (DNM) that integrate their properties into conventional deep learning models, yielding outstanding results in various tasks. In this study, DDenseNet model is proposed. DDenseNet combines the advantages of DenseNet and DNM to better simulate brain neuron characteristics and improve deep learning model performance. Layer Normalization (LayerNorm) is added to our model to stabilize data feature distributions and increase convergence speed. Experimental results show that DDenseNet outperforms traditional DenseNet and even some established classic deep learning models in classification tasks. The study suggests that using DNM as a classifier has the potential to create more efficient deep learning models for classification tasks.

本文言語英語
ホスト出版物のタイトルProceedings - 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ112-115
ページ数4
ISBN(電子版)9798350326178
DOI
出版ステータス出版済み - 2023
イベント15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023 - Hangzhou, 中国
継続期間: 2023/08/262023/08/27

出版物シリーズ

名前Proceedings - 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023

学会

学会15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023
国/地域中国
CityHangzhou
Period2023/08/262023/08/27

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • 制御と最適化

フィンガープリント

「Dendritic Learning-Based DenseNet for Classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル