Data-Driven Re-stabilization of Gene Regulatory Network Towards Early Medical Treatment

Xun Shen*, Hampei Sasahara*, Jun Ichi Imura*, Makito Oku, Kazuyuki Aihara

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

The Dynamical Network Biomarkers (DNBs) theory has been proposed to detect early-warning signals of critical transitions in gene regulatory networks only with High-Dimension Low-Sample-Size (HDLSS) data of the system state. Towards giving a theoretical foundation for early medical treatment, this paper proposes a data-driven approach for the re-stabilization of gene regulatory networks based on HDLSS data. In the proposed re-stabilization method, only the diagonal elements of the system matrix need to be adjusted. Namely, only the self-feedback loops of mRNA expression for genes are intervened in, which reduces the complexity of the early medical treatment based on gene regulation and makes it practical to be implemented. The proposed re-stabilization method is generalized to the systems with either saddle-node bifurcation or Hopf bifurcation. Numerical simulations have been implemented to validate the effectiveness of the proposed method.

本文言語英語
ホスト出版物のタイトルIFAC-PapersOnLine
編集者Hideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
出版社Elsevier B.V.
ページ6200-6205
ページ数6
2
ISBN(電子版)9781713872344
DOI
出版ステータス出版済み - 2023/07/01
イベント22nd IFAC World Congress - Yokohama, 日本
継続期間: 2023/07/092023/07/14

出版物シリーズ

名前IFAC-PapersOnLine
番号2
56
ISSN(電子版)2405-8963

学会

学会22nd IFAC World Congress
国/地域日本
CityYokohama
Period2023/07/092023/07/14

ASJC Scopus 主題領域

  • 制御およびシステム工学

フィンガープリント

「Data-Driven Re-stabilization of Gene Regulatory Network Towards Early Medical Treatment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル