Classification of finite-dimensional irreducible representations of generalized quantum groups via weyl groupoids

Saeid Azam, Hiroyuki Yamane, Malihe Yousofzadeh

研究成果: ジャーナルへの寄稿学術論文査読

9 被引用数 (Scopus)

抄録

Let χ be a bi-homomorphism over an algebraically closed field of characteristic zero. Let U(χ) be a generalized quantum group, associated with χ, such that dim U+(χ) = ∞,|R+(χ) | < ∞, and R+(χ) is irreducible, where U+(χ) is the positive part of U(χ), and R+(χ) is the Kharchenko positive root system of U+(χ). In this paper, we give a list of finite-dimensional irreducible U(χ)-modules, relying on a special reduced expression of the longest element of the Weyl groupoid of R(χ) := R+(χ) ∪ (–R+(χ)). From the list, we explicitly obtain lists of finite-dimensional irreducible modules for simple Lie superalgebras g of types A-G and the (standard) quantum superalgebras Uq(g). An intrinsic gap appears between the lists for g and Uq(g), e.g, if g is B(m, n) or D(m, n).

本文言語英語
ページ(範囲)59-130
ページ数72
ジャーナルPublications of the Research Institute for Mathematical Sciences
51
1
DOI
出版ステータス出版済み - 2015

ASJC Scopus 主題領域

  • 数学一般

フィンガープリント

「Classification of finite-dimensional irreducible representations of generalized quantum groups via weyl groupoids」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル