An Efficient Negative Correlation Gravitational Search Algorithm

Huiqin Chen, Qianyi Peng, Xiaosi Li, Yuki Todo, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

3 被引用数 (Scopus)

抄録

Gravitational search algorithm (GSA) is known as an effective optimization algorithm based on population. To further improve the performance of GSA, taking the combination of diversified search mechanisms into consideration would be a constructive solution for increasing the possibility of obtaining global optimum. In the meantime, the negative correlation search (NCS) algorithm has proven its ability of maintaining diversity effectively to develop the population. Thus, with such inspiration, an improved gravitational search algorithm based on negative correlation learning is proposed in this paper. While gravitational search conducts exploitation in the search space, negative correlation fulfills exploration by encouraging discrepant search behaviors to increase the optimization accuracy. The superiority of the proposed algorithm is demonstrated with experimental results based on several benchmark functions in comparison with its component algorithms.

本文言語英語
ホスト出版物のタイトルProceedings of the 2018 IEEE International Conference on Progress in Informatics and Computing, PIC 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ73-79
ページ数7
ISBN(電子版)9781538676707
DOI
出版ステータス出版済み - 2018/07/02
イベント6th IEEE International Conference on Progress in Informatics and Computing, PIC 2018 - Suzhou, 中国
継続期間: 2018/12/142018/12/16

出版物シリーズ

名前Proceedings of the 2018 IEEE International Conference on Progress in Informatics and Computing, PIC 2018

学会

学会6th IEEE International Conference on Progress in Informatics and Computing, PIC 2018
国/地域中国
CitySuzhou
Period2018/12/142018/12/16

ASJC Scopus 主題領域

  • 言語および言語学
  • 言語学および言語

フィンガープリント

「An Efficient Negative Correlation Gravitational Search Algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル