An acceleration scheme for deep learning-based BSDE solver using weak expansions

Riu Naito, Toshihiro Yamada

研究成果: ジャーナルへの寄稿学術論文査読

抄録

This paper gives an acceleration scheme for deep backward stochastic differential equation (BSDE) solver, a deep learning method for solving BSDEs introduced in Weinan et al. [Weinan, E, J Han and A Jentzen (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Communications in Mathematics and Statistics, 5(4), 349–380]. The solutions of nonlinear partial differential equations are quickly estimated using technique of weak approximation even if the dimension is high. In particular, the loss function and the relative error for the target solution become sufficiently small through a smaller number of iteration steps in the new deep BSDE solver.
寄稿の翻訳タイトルAn acceleration scheme for deep learning-based BSDE solver using weak expansions
本文言語未定義/不明
ページ(範囲)2050012-2050012
ページ数1
ジャーナルInternational Journal of Financial Engineering
07
02
DOI
出版ステータス出版済み - 2020/05

フィンガープリント

「An acceleration scheme for deep learning-based BSDE solver using weak expansions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル