抄録
The paper introduces a new weak approximation algorithm for stochastic differential equations (SDEs) of McKean–Vlasov type. The arbitrary order discretization scheme is available and is given using Malliavin weights, certain polynomial weights of Brownian motion, which play a role as correction of the approximation. The new weak approximation scheme works even if the test function is not smooth. In other words, the expectation of irregular functionals of McKean–Vlasov SDEs such as probability distribution functions are approximated through the proposed scheme. The effectiveness of the higher order scheme is confirmed by numerical examples for McKean–Vlasov SDEs including the Kuramoto model.
本文言語 | 英語 |
---|---|
ページ(範囲) | 521-559 |
ページ数 | 39 |
ジャーナル | BIT Numerical Mathematics |
巻 | 62 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 2022/06 |
ASJC Scopus 主題領域
- ソフトウェア
- コンピュータ ネットワークおよび通信
- 計算数学
- 応用数学