TY - JOUR
T1 - Role of transient receptor potential vanilloid 4 activation in indomethacin-induced intestinal damage
AU - Yamawaki, Hidemoto
AU - Mihara, Hiroshi
AU - Suzuki, Nobuhiro
AU - Nishizono, Hirofumi
AU - Uchida, Kunitoshi
AU - Watanabe, Shiro
AU - Tominaga, Makoto
AU - Sugiyama, Toshiro
PY - 2014/7/1
Y1 - 2014/7/1
N2 - Gastrointestinal ulcers and bleeding are serious complications of nonsteroidal anti-inflammatory drug (NSAID) use. Although administration of antibiotics and Toll-like receptor 4 knockdown mitigate NSAID-induced enteropathy, the molecular mechanism of these effects is poorly understood. Intestinal hyperpermeability is speculated to trigger the initial damage due to NSAID use. Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel expressed throughout the gastrointestinal tract epithelium that is activated by temperature, extension, and chemicals such as 5,6-epoxyeicosatrienoic acid (5,6-EET). The aim of this study was to investigate the possible role of TRPV4 in NSAID-induced intestinal damage. TRPV4 mRNA and protein expression was confirmed by RT-PCR and immunochemistry, respectively, in mouse and human tissues while TRPV4 channel activity of the intestinal cell line IEC-6 was assessed by Ca2+-imaging analysis. TRPV4 activators or the NSAID indomethacin significantly decreased transepithelial resistance (TER) in IEC-6 cells, and indomethacin-induced TER decreases were inhibited by specific TRPV4 inhibitors or small-interfering RNA TRPV4 knockdown, as well as by the epoxygenase inhibitor N-(methylsulfonyl)- 2-(2-propynyloxy)-benzenehexanamide, which decreased 5,6- EET levels. In TRPV4 knockout mice, indomethacin-induced intestinal damage was significantly reduced compared with WT mice. Taken together, these results show that TRPV4 activation in the intestinal epithelium caused epithelial hyperpermeability in response to NSAID-induced arachidonic acid metabolites and contributed to NSAID-induced intestinal damage. Thus, TRPV4 could be a promising new therapeutic target for the prevention of NSAID-induced intestinal damage.
AB - Gastrointestinal ulcers and bleeding are serious complications of nonsteroidal anti-inflammatory drug (NSAID) use. Although administration of antibiotics and Toll-like receptor 4 knockdown mitigate NSAID-induced enteropathy, the molecular mechanism of these effects is poorly understood. Intestinal hyperpermeability is speculated to trigger the initial damage due to NSAID use. Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel expressed throughout the gastrointestinal tract epithelium that is activated by temperature, extension, and chemicals such as 5,6-epoxyeicosatrienoic acid (5,6-EET). The aim of this study was to investigate the possible role of TRPV4 in NSAID-induced intestinal damage. TRPV4 mRNA and protein expression was confirmed by RT-PCR and immunochemistry, respectively, in mouse and human tissues while TRPV4 channel activity of the intestinal cell line IEC-6 was assessed by Ca2+-imaging analysis. TRPV4 activators or the NSAID indomethacin significantly decreased transepithelial resistance (TER) in IEC-6 cells, and indomethacin-induced TER decreases were inhibited by specific TRPV4 inhibitors or small-interfering RNA TRPV4 knockdown, as well as by the epoxygenase inhibitor N-(methylsulfonyl)- 2-(2-propynyloxy)-benzenehexanamide, which decreased 5,6- EET levels. In TRPV4 knockout mice, indomethacin-induced intestinal damage was significantly reduced compared with WT mice. Taken together, these results show that TRPV4 activation in the intestinal epithelium caused epithelial hyperpermeability in response to NSAID-induced arachidonic acid metabolites and contributed to NSAID-induced intestinal damage. Thus, TRPV4 could be a promising new therapeutic target for the prevention of NSAID-induced intestinal damage.
KW - Intestine
KW - Nonsteroidal anti-inflammatory drugs
UR - http://www.scopus.com/inward/record.url?scp=84903641691&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00105.2013
DO - 10.1152/ajpgi.00105.2013
M3 - 学術論文
C2 - 24789205
AN - SCOPUS:84903641691
SN - 0193-1857
VL - 307
SP - G33-G40
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 1
ER -