Parkinson’s disease-associated ATP13A2/PARK9 functions as a lysosomal H+,K+-ATPase

Takuto Fujii*, Shushi Nagamori, Pattama Wiriyasermkul, Shizhou Zheng, Asaka Yago, Takahiro Shimizu, Yoshiaki Tabuchi, Tomoyuki Okumura, Tsutomu Fujii, Hiroshi Takeshima, Hideki Sakai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson’s disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H+,K+-ATPase. The K+-dependent ATPase activity and the lysosomal K+-transport activity of ATP13A2 are inhibited by an inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase, thapsigargin, and K+-competitive inhibitors of gastric H+,K+-ATPase, such as vonoprazan and SCH28080. Interestingly, these H+,K+-ATPase inhibitors cause lysosomal alkalinization and α-synuclein accumulation, which are pathological hallmarks of PD. Furthermore, PD-associated mutants of ATP13A2 show abnormal expression and function. Our results suggest that the H+/K+-transporting function of ATP13A2 contributes to acidification and α-synuclein degradation in lysosomes.

Original languageEnglish
Article number2174
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - 2023/12

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Parkinson’s disease-associated ATP13A2/PARK9 functions as a lysosomal H+,K+-ATPase'. Together they form a unique fingerprint.

Cite this