TY - JOUR
T1 - IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet
AU - Luo, Xiao Yu
AU - Takahara, Terumi
AU - Kawai, Kengo
AU - Fujino, Masayuki
AU - Sugiyama, Toshiro
AU - Tsuneyama, Koichi
AU - Tsukada, Kazuhiro
AU - Nakae, Susumu
AU - Zhong, Liang
AU - Li, Xiao Kang
PY - 2013/12/15
Y1 - 2013/12/15
N2 - Cytokines play important roles in all stages of steatohepatitis, including hepatocyte injury, the inflammatory response, and the altered function of sinusoidal cells. This study examined the involvement of a major inflammatory cytokine, interferon-γ (IFN-γ), in the progression of steatohepatitis. In a steatohepatitis model by feeding a methionine- and choline-deficient high-fat (MCDHF) diet to both wild-type and IFN-γ-deficient mice, the liver histology, expression of genes encoding inflammatory cytokines, and fibrosis-related markers were examined. To analyze the effects of IFN-γ on Kupffer cells in vitro, we examined the tumor necrosis factor-α (TNF-α) production by a mouse macrophage cell line. Forty two days of MCDHF diet resulted in weight loss, elevated aminotransferases, liver steatosis, and inflammation in wild-type mice. However, the IFN-γ-deficient mice exhibited less extensive changes. RT-PCR revealed that the expression of tumor necrosis factor-α (TNF-α), transforming growth factor-β, inducible nitric oxide synthase, interleukin-4 and osteopontin were increased in wildtype mice, although they were suppressed in IFN-γ-deficient mice. Seventy days of MCDHF diet induced much more liver fibrosis in wild-type mice than in IFN-γ-deficient mice. The expression levels of fibrosis-related genes, α-smooth muscle actin, type I collagen, tissue inhibitor of matrix metalloproteinase-1, and matrix metalloproteinase- 2, were dramatically increased in wild-type mice, whereas they were significantly suppressed in IFN-γ-deficient mice. Moreover, in vitro experiments showed that, when RAW 264.7 macrophages were treated with IFN-γ, they produced TNF-α in a dose-dependent manner. The present study showed that IFN-γ deficiency might inhibit the inflammatory response of macrophages cells and subsequently suppress stellate cell activation and liver fibrosis. These findings highlight the critical role of IFN-γ in the progression of steatohepatitis.
AB - Cytokines play important roles in all stages of steatohepatitis, including hepatocyte injury, the inflammatory response, and the altered function of sinusoidal cells. This study examined the involvement of a major inflammatory cytokine, interferon-γ (IFN-γ), in the progression of steatohepatitis. In a steatohepatitis model by feeding a methionine- and choline-deficient high-fat (MCDHF) diet to both wild-type and IFN-γ-deficient mice, the liver histology, expression of genes encoding inflammatory cytokines, and fibrosis-related markers were examined. To analyze the effects of IFN-γ on Kupffer cells in vitro, we examined the tumor necrosis factor-α (TNF-α) production by a mouse macrophage cell line. Forty two days of MCDHF diet resulted in weight loss, elevated aminotransferases, liver steatosis, and inflammation in wild-type mice. However, the IFN-γ-deficient mice exhibited less extensive changes. RT-PCR revealed that the expression of tumor necrosis factor-α (TNF-α), transforming growth factor-β, inducible nitric oxide synthase, interleukin-4 and osteopontin were increased in wildtype mice, although they were suppressed in IFN-γ-deficient mice. Seventy days of MCDHF diet induced much more liver fibrosis in wild-type mice than in IFN-γ-deficient mice. The expression levels of fibrosis-related genes, α-smooth muscle actin, type I collagen, tissue inhibitor of matrix metalloproteinase-1, and matrix metalloproteinase- 2, were dramatically increased in wild-type mice, whereas they were significantly suppressed in IFN-γ-deficient mice. Moreover, in vitro experiments showed that, when RAW 264.7 macrophages were treated with IFN-γ, they produced TNF-α in a dose-dependent manner. The present study showed that IFN-γ deficiency might inhibit the inflammatory response of macrophages cells and subsequently suppress stellate cell activation and liver fibrosis. These findings highlight the critical role of IFN-γ in the progression of steatohepatitis.
KW - Hepatic stellate cell
KW - Interferon-γ
KW - Macrophage
UR - http://www.scopus.com/inward/record.url?scp=84890328256&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00193.2013
DO - 10.1152/ajpgi.00193.2013
M3 - 学術論文
C2 - 24136786
AN - SCOPUS:84890328256
SN - 0193-1857
VL - 305
SP - G891-G899
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 12
ER -